| lower bound: | 56 |
| upper bound: | 56 |
Construction of a linear code [122,11,56] over GF(2):
[1]: [3, 2, 2] Cyclic Linear Code over GF(2)
CordaroWagnerCode of length 3
[2]: [78, 6, 56] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, w^2, w^2, w^2, w, 0, 1, 0, w^2, 1, 1, 1, w^2, w^2, w^2, 1, 1, w^2, w^2, 1, w, w, w^2, 0, w, 0, 0, 1, 1, w^2, 0, w^2, w, w^2, w^2, 1, 1, 0, 0, w^2, 1, w^2, 1, 0, w^2, 1, 0, w, 0, w, w, w^2, w, w, w^2, 0, w^2, 0, 0, w^2, w, 1, w, w, 1, w^2, w, w^2, 0, 0, w^2, 0, w ]
[ 0, 1, 0, 0, 0, 0, 1, w, w, 0, w, w, 1, 1, 1, w^2, w^2, 0, w, w, 1, w^2, 0, w, 1, w, 1, w^2, w^2, w^2, w, 0, w, w^2, 0, w^2, 1, 0, w^2, 0, 1, w^2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, w^2, w, w^2, 1, w^2, 0, 1, w^2, w^2, 1, w^2, 0, 1, 0, 0, w, 1, 0, 0, 0, w^2, w^2, 0, 1, w^2, w^2 ]
[ 0, 0, 1, 0, 0, 0, 1, 0, w^2, 1, 0, 0, w, 0, w^2, w^2, 1, w, 1, w^2, 0, w^2, w, 1, 0, w, 1, 0, w^2, 0, w^2, w, w, 0, w, 0, w, w, 1, w^2, w, w^2, w^2, 1, 1, w^2, 0, w, 1, 0, w^2, 1, w, w^2, 1, 0, 0, 0, w^2, 0, w^2, w, 1, w^2, 1, w, w, w^2, 1, w^2, 1, w^2, 1, w^2, w^2, 1, 1, 0 ]
[ 0, 0, 0, 1, 0, 0, w, w^2, w, w, 1, w^2, 0, 0, w^2, 0, 0, w^2, 0, w^2, 0, w^2, 1, 0, w, 1, w^2, w^2, 0, w, 0, w^2, 1, 1, w, w, w, w^2, 0, w, 0, 1, w^2, w^2, w^2, w, 1, w^2, w, w^2, w^2, w^2, 0, w, w, 0, w, 1, 1, 1, 0, 1, w, 1, 1, 0, 1, w^2, w, w, 1, 0, 1, 1, w^2, 1, 1, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, w, w^2, w, w, 1, w^2, 0, 0, w^2, 0, 0, w^2, 0, w^2, 0, w^2, 1, 0, w, 1, w^2, w^2, 0, w, 0, w^2, 1, 1, w, w, w, w^2, 0, w, 0, 1, w^2, w^2, w^2, w, 1, w^2, w, w^2, w^2, w^2, 0, w, w, 0, w, 1, 1, 1, 0, 1, w, 1, 1, 0, 1, w^2, w, w, 1, 0, 1, 1, w^2, 1, 1 ]
[ 0, 0, 0, 0, 0, 1, 1, 1, w^2, 0, w, 0, 1, w, w, w, 1, 1, 1, w, w, 1, 1, w, w^2, w^2, 1, 0, w^2, 0, 0, w, w, 1, 0, 1, w^2, 1, w^2, w, w, 0, 0, 1, w, 1, w, 0, 1, w, 0, w^2, 0, w^2, w^2, 1, w^2, w^2, 1, 0, 1, 0, 0, 1, w^2, w, w^2, w^2, w, 1, w^2, 1, 0, 0, 1, 0, w^2, w ] where w:=Root(x^2 + x + 1)[1,1];
[3]: [77, 6, 55] Linear Code over GF(2^2)
Puncturing of [2] at { 78 }
[4]: [231, 12, 110] Quasicyclic of degree 77 Linear Code over GF(2)
ConcatenatedCode of [3] and [1]
[5]: [230, 12, 109] Linear Code over GF(2)
Puncturing of [4] at { 231 }
[6]: [121, 11, 55] Linear Code over GF(2)
ResidueCode of [5]
[7]: [122, 11, 56] Linear Code over GF(2)
ExtendCode [6] by 1
last modified: 2001-01-30
Lb(122,11) = 56 is found by adding a parity check bit to: Lb(121,11) = 55 is found by construction A: taking the residue of: Lb(230,12) = 109 is found by truncation of: Lb(231,12) = 110 BZ Ub(122,11) = 56 follows by a one-step Griesmer bound from: Ub(65,10) = 28 follows by a one-step Griesmer bound from: Ub(36,9) = 14 Ja
Ja: D.B. Jaffe, Binary linear codes: new results on nonexistence, 1996, code.ps.gz.
Notes
|