| lower bound: | 54 |
| upper bound: | 58 |
Construction of a linear code [96,10,54] over GF(3):
[1]: [95, 11, 54] Linear Code over GF(3)
code found by Tatsuya Maruta
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 2, 2, 2, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 0, 2, 2, 1, 2, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 2, 2, 0, 1, 2, 0, 1, 1, 2, 2, 2, 2, 0, 2, 2, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 2, 1, 0, 2, 2, 0, 1, 0, 1, 0, 2, 2, 0, 2 ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 2, 2, 2, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 0, 2, 2, 1, 2, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 2, 2, 0, 1, 2, 0, 1, 1, 2, 2, 2, 2, 0, 2, 2, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1, 0, 0, 2, 0, 0, 2, 0, 1, 0, 2, 1, 0, 2, 2, 0, 1, 0, 1, 1, 2, 2, 0 ]
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 2, 2, 2, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 0, 2, 2, 1, 2, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 2, 2, 0, 1, 2, 0, 1, 1, 2, 2, 2, 2, 0, 2, 2, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1, 0, 0, 2, 0, 0, 2, 1, 1, 0, 2, 2, 0, 2, 2, 0, 1, 0, 0, 1, 2, 2 ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 2, 2, 1, 0, 2, 1, 2, 1, 1, 2, 2, 0, 1, 2, 1, 0, 1, 1, 1, 0, 2, 2, 0, 1, 1, 0, 1, 2, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 2, 2, 2, 0, 0, 1, 0, 0, 2, 1, 1, 0, 2, 1, 1 ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 2, 2, 1, 0, 2, 1, 2, 1, 1, 2, 2, 0, 1, 2, 1, 0, 1, 1, 1, 0, 2, 2, 0, 1, 1, 0, 1, 2, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 1, 0, 2, 1, 2, 2, 0, 0, 1, 0, 0, 2, 1, 2, 0, 2, 1 ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 2, 2, 1, 0, 2, 1, 2, 1, 1, 2, 2, 0, 1, 2, 1, 0, 1, 1, 1, 0, 2, 2, 0, 1, 1, 0, 1, 2, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 1, 0, 0, 2, 2, 2, 0, 2 ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 2, 2, 1, 1, 0, 2, 2, 2, 0, 2, 1, 0, 2, 2, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 2, 1, 2, 2, 0, 1, 0, 1, 0, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 0, 2, 1, 2, 0, 2, 0, 2, 1 ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 2, 2, 1, 1, 0, 2, 2, 2, 0, 2, 1, 0, 2, 2, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 2, 1, 2, 2, 0, 1, 0, 1, 0, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 0, 1, 0, 0, 0, 2, 2, 2, 0, 2, 1, 2, 2, 2, 0, 2 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 2, 2, 1, 1, 0, 2, 2, 2, 0, 2, 1, 0, 2, 2, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 2, 1, 2, 2, 0, 1, 0, 1, 0, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 0, 0, 0, 2, 2, 2, 0, 2, 1, 1, 2, 2, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 0, 0, 0, 1, 0, 2, 1, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 0, 2, 2, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 2, 0, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 0 ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 2, 2, 2, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 0, 2, 2, 1, 2, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 2, 2, 0, 1, 2, 0, 1, 1, 2, 2, 2, 2, 0, 2, 2, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 1, 1, 0, 1, 2, 0, 1, 0, 1, 0, 2, 2, 0, 2, 1 ]
[2]: [96, 11, 54] Linear Code over GF(3)
ExtendCode [1] by 1
[3]: [96, 10, 54] Linear Code over GF(3)
Subcode of [2]
last modified: 2006-10-04
Lb(96,10) = 54 is found by taking a subcode of: Lb(96,11) = 54 is found by lengthening of: Lb(95,11) = 54 MST Ub(96,10) = 58 follows by a one-step Griesmer bound from: Ub(37,9) = 19 follows by a one-step Griesmer bound from: Ub(17,8) = 6 is found by considering shortening to: Ub(16,7) = 6 vE2
vE2: M. van Eupen, Four nonexistence results for ternary linear codes, IEEE Trans. Inform. Theory 41 (1995) 800-805.
Notes
|