| lower bound: | 25 |
| upper bound: | 26 |
Construction of a linear code [60,10,25] over GF(2):
[1]: [4, 4, 1] Cyclic Linear Code over GF(2)
UniverseCode of length 4
[2]: [8,0] Code
ZeroCode of length 8
[3]: [8, 2, 7] Linear Code over GF(2^3)
Shortening of [6] at { 9 }
[4]: [56, 6, 28] Linear Code over GF(2)
ZinovievCode using inner codes: [12] [8], outer codes: [3] [2]
[5]: [8, 1, 8] Cyclic Linear Code over GF(2)
RepetitionCode of length 8
[6]: [9, 3, 7] Cyclic Linear Code over GF(2^3)
MDSCode of dimension 3 over GF(8)
[7]: [8, 3, 6] Linear Code over GF(2^3)
Puncturing of [6] at { 9 }
[8]: [7, 4, 3] Linear Code over GF(2)
Puncturing of [11] at 1
[9]: [4, 1, 4] Cyclic Linear Code over GF(2)
RepetitionCode of length 4
[10]: [4, 3, 2] Cyclic Linear Code over GF(2)
Dual of the RepetitionCode of length 4
[11]: [8, 4, 4] Quasicyclic of degree 2 Linear Code over GF(2)
PlotkinSum of [10] and [9]
[12]: [7, 3, 4] Linear Code over GF(2)
Shortening of [11] at 1
[13]: [56, 10, 24] Linear Code over GF(2)
ZinovievCode using inner codes: [12] [8], outer codes: [7] [5]
[14]: [60, 10, 25] Linear Code over GF(2)
ConstructionX using [13] [4] and [1]
last modified: 2001-02-03
Lb(60,10) = 25 Ch Ub(60,10) = 26 follows by a one-step Griesmer bound from: Ub(33,9) = 12 He
He: P.W. Heijnen, Er bestaat geen binaire [33,9,13] code, Afstudeerverslag, T.U. Delft, Oct. 1993.
Notes
|