| lower bound: | 112 |
| upper bound: | 114 |
Construction of a linear code [236,10,112] over GF(2):
[1]: [3, 2, 2] Cyclic Linear Code over GF(2)
CordaroWagnerCode of length 3
[2]: [78, 6, 56] Linear Code over GF(2^2)
Construction from a stored generator matrix:
[ 1, 0, 0, 0, 0, 0, w^2, w^2, w^2, w, 0, 1, 0, w^2, 1, 1, 1, w^2, w^2, w^2, 1, 1, w^2, w^2, 1, w, w, w^2, 0, w, 0, 0, 1, 1, w^2, 0, w^2, w, w^2, w^2, 1, 1, 0, 0, w^2, 1, w^2, 1, 0, w^2, 1, 0, w, 0, w, w, w^2, w, w, w^2, 0, w^2, 0, 0, w^2, w, 1, w, w, 1, w^2, w, w^2, 0, 0, w^2, 0, w ]
[ 0, 1, 0, 0, 0, 0, 1, w, w, 0, w, w, 1, 1, 1, w^2, w^2, 0, w, w, 1, w^2, 0, w, 1, w, 1, w^2, w^2, w^2, w, 0, w, w^2, 0, w^2, 1, 0, w^2, 0, 1, w^2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, w^2, w, w^2, 1, w^2, 0, 1, w^2, w^2, 1, w^2, 0, 1, 0, 0, w, 1, 0, 0, 0, w^2, w^2, 0, 1, w^2, w^2 ]
[ 0, 0, 1, 0, 0, 0, 1, 0, w^2, 1, 0, 0, w, 0, w^2, w^2, 1, w, 1, w^2, 0, w^2, w, 1, 0, w, 1, 0, w^2, 0, w^2, w, w, 0, w, 0, w, w, 1, w^2, w, w^2, w^2, 1, 1, w^2, 0, w, 1, 0, w^2, 1, w, w^2, 1, 0, 0, 0, w^2, 0, w^2, w, 1, w^2, 1, w, w, w^2, 1, w^2, 1, w^2, 1, w^2, w^2, 1, 1, 0 ]
[ 0, 0, 0, 1, 0, 0, w, w^2, w, w, 1, w^2, 0, 0, w^2, 0, 0, w^2, 0, w^2, 0, w^2, 1, 0, w, 1, w^2, w^2, 0, w, 0, w^2, 1, 1, w, w, w, w^2, 0, w, 0, 1, w^2, w^2, w^2, w, 1, w^2, w, w^2, w^2, w^2, 0, w, w, 0, w, 1, 1, 1, 0, 1, w, 1, 1, 0, 1, w^2, w, w, 1, 0, 1, 1, w^2, 1, 1, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, w, w^2, w, w, 1, w^2, 0, 0, w^2, 0, 0, w^2, 0, w^2, 0, w^2, 1, 0, w, 1, w^2, w^2, 0, w, 0, w^2, 1, 1, w, w, w, w^2, 0, w, 0, 1, w^2, w^2, w^2, w, 1, w^2, w, w^2, w^2, w^2, 0, w, w, 0, w, 1, 1, 1, 0, 1, w, 1, 1, 0, 1, w^2, w, w, 1, 0, 1, 1, w^2, 1, 1 ]
[ 0, 0, 0, 0, 0, 1, 1, 1, w^2, 0, w, 0, 1, w, w, w, 1, 1, 1, w, w, 1, 1, w, w^2, w^2, 1, 0, w^2, 0, 0, w, w, 1, 0, 1, w^2, 1, w^2, w, w, 0, 0, 1, w, 1, w, 0, 1, w, 0, w^2, 0, w^2, w^2, 1, w^2, w^2, 1, 0, 1, 0, 0, 1, w^2, w, w^2, w^2, w, 1, w^2, 1, 0, 0, 1, 0, w^2, w ] where w:=Root(x^2 + x + 1)[1,1];
[3]: [234, 12, 112] Quasicyclic of degree 78 Linear Code over GF(2)
ConcatenatedCode of [2] and [1]
[4]: [236, 12, 112] Linear Code over GF(2)
PadCode [3] by 2
[5]: [236, 10, 112] Linear Code over GF(2)
Subcode of [4]
last modified: 2001-01-30
Lb(236,10) = 112 is found by taking a subcode of: Lb(236,12) = 112 is found by lengthening of: Lb(234,12) = 112 BZ Ub(236,10) = 114 follows by a one-step Griesmer bound from: Ub(121,9) = 57 follows by a one-step Griesmer bound from: Ub(63,8) = 28 BJV
BZ: E. L. Blokh & V. V. Zyablov, Coding of generalized concatenated codes, Probl. Inform. Transm. 10 (1974) 218-222.
Notes
|