| lower bound: | 129 |
| upper bound: | 135 |
Construction of a linear code [213,10,129] over GF(3):
[1]: [3, 2, 2] Cyclic Linear Code over GF(3)
Dual of the RepetitionCode of length 3
[2]: [210, 8, 129] Linear Code over GF(3)
QuasiTwistedCyclicCode of length 210 and constant 2 with generators: (0 0 0 0 0 0 1 0 0 1 0 1 0 0 1), (1 2 0 0 2 2 0 0 1 1 1 1 0 1 2), (1 2 2 1 0 0 1 0 1 2 2 2 1 0 2), (1 2 2 1 0 0 2 2 2 2 2 0 0 1 2), (1 1 1 2 0 0 1 1 2 0 2 0 0 0 0), (2 0 1 2 1 2 0 1 2 0 0 0 0 0 2), (1 2 1 0 1 1 1 1 1 2 0 2 0 1 1), (0 0 1 0 2 2 0 1 0 0 2 0 0 0 1), (1 2 1 1 1 1 2 0 0 1 0 0 2 2 0), (2 1 2 1 0 2 1 2 1 2 0 0 0 0 2), (2 2 1 1 1 2 0 1 2 1 0 1 0 1 0), (2 2 0 0 0 1 2 1 2 2 2 0 1 2 2), (1 0 2 1 0 1 0 1 0 2 0 0 2 2 2), (1 0 0 1 0 1 1 2 2 0 0 1 2 1 0)
[3]: [210, 10, 127] Linear Code over GF(3)
QuasiTwistedCyclicCode of length 210 and constant 2 with generators: (0 1 0 0 0 0 0 0 0 0 0 2 0 0 0), (1 1 2 0 1 0 1 2 0 0 2 0 0 0 2), (2 0 2 1 2 0 0 2 2 0 1 0 0 1 1), (0 0 1 1 2 1 0 2 1 0 1 0 1 0 1), (2 0 2 1 0 0 1 2 1 2 1 1 0 0 2), (1 2 1 2 0 0 1 2 1 1 2 2 1 2 1), (0 2 0 1 2 2 0 0 1 2 2 1 0 0 0), (1 0 2 2 1 1 1 1 2 0 0 1 2 0 2), (2 2 2 0 1 0 1 1 2 1 1 2 2 2 0), (2 2 2 1 0 2 1 1 0 2 0 2 2 2 2), (1 2 0 0 1 1 1 1 1 1 0 2 1 1 0), (1 2 1 1 0 0 0 0 0 0 2 1 2 2 0), (2 0 0 0 2 2 0 2 0 0 0 0 2 0 1), (0 1 1 1 2 1 2 1 1 1 1 1 0 0 2)
[4]: [213, 10, 129] Linear Code over GF(3)
ConstructionX using [3] [2] and [1]
last modified: 2011-08-30
Lb(213,10) = 128 is found by shortening of: Lb(214,11) = 128 MSY Ub(213,10) = 135 is found by considering shortening to: Ub(212,9) = 135 Gur
MSY: T. Maruta, M. Shinohara, F. Yamane, K. Tsuji, E. Takata, H. Miki & R. Fujiwara, New linear codes from cyclic or generalized cyclic codes by puncturing, to appear in Proc. 10th International Workshop on Algebraic and Combinatorial Coding Theory(ACCT-10) in Zvenigorod, Russia, 2006.
Notes
|