| lower bound: | 114 |
| upper bound: | 121 |
Construction of a linear code [192,10,114] over GF(3):
[1]: [48, 5, 38] Quasicyclic of degree 6 Linear Code over GF(3^2)
QuasiCyclicCode of length 48 with generating polynomials: w^7*x^7 + w^6*x^5 + 2*x^4 + w^7*x^3 + x^2 + w^3*x + 1, w^7*x^7 + w*x^6 + w^6*x^5 + w*x^4 + w^6*x^3 + x^2 + w^2*x + w^7, w*x^7 + 2*x^6 + 2*x^5 + w*x^4 + w^3*x^3 + w^7*x + 1, w^5*x^7 + w^5*x^6 + w*x^5 + w^3*x^4 + w*x^3 + w^5*x^2 + 1, w*x^7 + w^6*x^6 + w^6*x^5 + w^7*x^3 + w^5*x^2 + w^5*x, x^7 + w*x^6 + w^3*x^5 + w^6*x^4 + w^5*x^3 + w^7*x^2 + w^2*x + 1
[2]: [121, 116, 3] "Hamming code (r = 5)" Linear Code over GF(3)
5-th order HammingCode over GF( 3)
[3]: [121, 5, 81] Cyclic Linear Code over GF(3)
Dual of [2]
[4]: [119, 5, 79] Linear Code over GF(3)
Puncturing of [3] at { 120 .. 121 }
[5]: [40, 4, 27] Linear Code over GF(3)
ResidueCode of [4]
[6]: [38, 4, 25] Linear Code over GF(3)
Puncturing of [5] at { 39 .. 40 }
[7]: [13, 3, 9] Linear Code over GF(3)
ResidueCode of [6]
[8]: [11, 3, 7] Linear Code over GF(3)
Puncturing of [7] at { 12 .. 13 }
[9]: [4, 2, 3] Linear Code over GF(3)
ResidueCode of [8]
[10]: [192, 10, 114] Linear Code over GF(3)
ZinovievCode using inner codes: [9], outer codes: [1]
last modified: 2003-10-31
Lb(192,10) = 114 BZ Ub(192,10) = 121 Da2
Da2: R.N. Daskalov, The linear programming bound for ternary linear codes, p. 423 in: IEEE International Symposium on Information Theory, Trondheim, 1994.
Notes
|